
Luau
Official White-paper

Author: David Eklund
Date: 14 Sept 2003

Last Updated: 20 Jun 2004
Revision: 1.03

Table of Contents

I. Introduction
1. Preface
2. Overview
3. Why Luau?
4. Revision History
5. Contact Information
6. Distribution Policy

II. End-User's Guide
1. Luau Basics
2. Using luau – The Console App
3. Using luau-x – The X App
4. Other Apps
5. Final Notes

III.Developer's Guide
1. How Luau Works
2. Understanding the Luau Repository XML Format
3. Version Parsing in Luau
4. Using luau-register
5. Good Policies (aka, How Not To Annoy Your Users)

IV.Programmer's Guide
1. The libuau Interface
2. Good Practices

V. Contributor's Guide
1. Luau Internals

VI.Conclusion
VII.Appendices
 Appendix A. GNU Free Documentation License

Copyright (c) 2003 David Eklund
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free
Documentation License"

I.Introduction
1.1.Preface

One of the mantras of the Open Source community is “Release Early, Release Often.”
This is often considered one of the central convictions of the “bazaar style” of software
development. To quote Eric S. Raymond:

In the bazaar view, on the other hand, you assume that bugs are generally shallow
phenomena—or, at least, that they turn shallow pretty quickly when exposed to a
thousand eager co-developers pounding on every single new release. Accordingly
you release often in order to get more corrections, and as a beneficial side effect you
have less to lose if an occasional botch gets out the door.

There is, however, a downside to this development model.

When you install your brand-new Linux distribution, you're on the cutting edge. You've
got thousands of packages, fresh from the presses, ready to serve your every need. But as
times wears on and you explore the inner recesses of each of these thousands of
packages, a problem arises – in your exploration, you discover the ever-dreaded presence
of bugs. After all, no software release is perfect – even the Big Guys have to release
patches every once in a while for their employees' minor bungles.

So what do you do? There's a couple solutions available to you:

1) Live with it
2) Whine about it
3) See if a new version has been released that fixes it

What we're most interested in is option three. Certainly if konqueror stalls and spits out
strange characters in a foreign character set every time you try to visit
http://luau.sourceforge.net (which is, of course, your homepage, right?), you're going to
go see if the problem is recognized and has been fixed – and let's say it has. But now
there's another problem.

Konqueror relies on a total of 35 external libraries. While for this issue it's likely the
bug is in konqueror itself or libkonq, any small bug in any of the 34 other libraries could
conceivably bring Konqueror to a grinding halt. And if you're not the type to go source
code spelunking, then you have but one choice: find and install the newest version of all
35 libraries. Plus Konqueror itself.

Of course, it's just good system administration in general to keep on top of all the latest
software updates – or at least the ones that can affect your system's performance,
stability, and security. The problem with trying to keep up with all the updates for all
those thousands of packages your distribution installed has certainly been tackled before.
Debian has apt. FreeBSD has the ports tree. Gentoo has a ports look-alike. And RedHat
has the Red Hat Network. And these all work rather well for their purposes – but what

I'm here to provide is an alternate solution.

1.2.Overview
The problem with distributor's providing access to all those new software updates is that,
truthfully, even they can't keep up with all the latest. If you're not big into the cutting-
edge, then apt's system works pretty well, for example – but if you want the latest and
greatest, you're simply going to have to go to the source and download it yourself. Luau
isn't designed so much for production status servers (in fact, I would recommend against
it) where everything needs to work together perfectly – rather, it's designed for the
enthusiast who wants instantaneous updates, straight from the source. It's for those of us
who want to keep up with the latest developments for all our favorite software packages
– and maybe some of the more mundane ones as well. In the end, it's for the home user,
not the corporate user.

So finally, you ask, what is Luau? Luau is a system for retrieving software updates and
status messages from package maintainers individually – that is, it gets the information
straight from the source as opposed to a third party, such as Red Hat. Of course, there's a
caveat to this – in order to get information directly from the source, the source has to
provide some information (all you developers out there – it's really easy! Go skip down
to the Developer's Guide and read the overview). So if the maintainer for your favorite
software package doesn't support Luau and you want to use it, go bug her – she most
likely simply hasn't heard about it.

Luau works through the use of a simple “software respoitory” file that's publicly
available (published by the software maintainer) and describes all the currently available
updates to all current software releases. In general, this will simply consist of a list of all
the currently available releases, though more complicated scenarios (along with the
possibility to send messages and other configuration updates to the user-base) are also
available. For more information on this, skip on down to the Developer's Guide.

1.3.Why Luau?
At this point, you may be asking why all this trouble to implement a solution to a
problem that's already been solved by the likes of apt, RHN, and so on. As mentioned
before, Luau is not meant to replace these systems unilaterally, but rather to supplement
them. Both ways of working have their pros and cons, some of which I've tried to
enumerate below:

Pros Cons
Apt, RHN,
ports, etc.

• Software updates more likely to
work with one another

• More packages available (for
the moment...)

• Usually more stable software

• Updates not as current
• In some cases (RHN) is not free
• Sometimes hard to convince to

support lesser known packages
• No personal connection with actual

software developers

Pros Cons
Luau • Provides not only software

updates but also status messages
• Instant updates as soon as the

maintainer posts them
• Decentralized, so you don't have

to rely on only one source
• Only the packages you care

about are monitored
• If you can only convince the

maintainer to support Luau, any
package you like will be
supported

• Software may be unstable, or may
not work well together with other
packages

• Does not provide automatic
dependency tracking and
downloading (possible in future?)

• Only available for packages for
which respository files are provided
for by the maintainer

1.4.Revision History

Version 1.03
20 Jun. 2004
This release again updates the Developer's Guide to describe the new 1.1 Luau repository
XML file. Also the "Using luau-register" section was modified to describe the new --
from-file and --from-url options. A couple of other minor spelling/grammatical/stylistic
modifications were also made.

Version 1.02
14 Mar. 2004
This release is updated to cover the changes in the XML format. Also the “Release Date
Compatibility Scheme” section has been dropped (it was obsolete) and replaced with a
description of Luau's version parsing capabilities. Section 3.4 (“Using luau-register”) has
been amended to describe Autopackage's “root name” scheme. Finally, some minor
spelling/grammatical updates have been made.

Version 1.01
25 Dec. 2003
This release is updated to reflect the change in the updates file style and the new options
added to the Luau console clients (luau and luau-register).

Version 1.00
14 Sept. 2003
This is the first public release of this document. Nothing to say here!

1.5.Contact Information

David Eklund
Project Maintainer and Head Developer
<deklund@fastmail.fm>

Please contact me with any ideas, criticism, or bugs you have to share with me.
Furthermore, if you believe you have anything you can contribute to Luau in the form of
coding, translations, web page design, or whatever else you can think of, talk to me –
most likely I can use your services.

Luau Web Site: http://luau.sourceforge.net

1.6.Distribution Policy
This document is distributed under the GNU Free Documentation License. For a full
copy of the license, see Appendix A.

II.End-User's Guide
2.1.Luau Basics

Luau is a framework for software distribution and update transmission. The first thing to
make clear is that Luau is not in any way a package manager, nor does it have anything
to do with package management. Luau does support various types of packages –
specifically RPMs, DEBs, Autopackage files, self-extracting executables, and generic tar
balls – and, for those that it can, it supports automatic installation (meaning everything
except tar balls, which obviously cannot be installed automatically), but it is not
designed for package installation, uninstallation, or management. You will have to find a
different tool for this – there are many available.

The second thing to make clear is that only software packages that explicitly support
Luau can be updated through Luau. At the moment, this is a very small number (only
one at the time of this writing – that would be Luau itself), but hopefully this number will
increase. If you would like to use Luau with some of the software packages you use
often, contact the developers! If enough people are interested, they will most likely start
supporting it, since it takes very little upkeep on their part. If you're particularly
motivated, you can even support it yourself – you don't have to edit any source code.
You only have to provide an file describing all the current software revisions available
(see the Developer's Guide for details), and then you can contact the package developers
again and – unless they're extremely opposed to the idea – they will simply link up to
your page. It's all very simple – again, see the Developer's Guide a few pages down for
details.

There are three basic kinds of updates supported by Luau: software updates, message
updates, and Luau configuration updates. The first kind are the most prevalent and the
main focus – they provide updates to installed software, such as when a software project
makes available a new release. The second, message updates, are for when software
maintainers have an important message to distribute to their user-base. This may be to
inform users when there is a major security flaw in certain versions of the software
package, or if the development team is in need of developers or artists, for example. The
final kind of update is an update to the internal configuration of Luau itself. Luau fetches
updates about software projects by downloading a configuration file specified upon

installation by the software maintainer. If this location should have to change, then this
kind of update will inform you of the change in server status and – if you accept it, which
you certainly should – will automatically update Luau's internal database to reflect the
change. These should be rare, but be certain to pay close attention should one become
available – if you ignore or don't accept it, Luau will most likely stop working with
respect to the specified program, and you'll have to update the program configuration by
hand to get it working again.

2.2.Using luau – The Console App
The luau console application is the most basic and fundamental user-oriented segment
of the Luau suite. That being said, you'll most likely want to use Luau-X for most of your
needs, since it is much more intuitive and user-friendly. However, when you don't have
access to an X server, or you need something to use in a shell-based environment (e.g.,
for a shell script), luau is just as powerful and as flexible as Luau-X.

There are two basic modes luau supports – command-line based and interactive. These
should be familiar to anyone with a *nix background: the command-line based mode
simply takes options from the command-line, interprets them, and executes the desired
activity (download an update, list all registered programs, etc.), while interactive mode
provides a prompt to the user into which (s)he can execute a string of commands.

The command line options are as follows:
Modes: (only one may be specified)
 -d, --download=ID download update with given ID for specified program
 -e, --install=ID install update with given ID for specified program
 -g, --getupdates retrieve a list of updates for the specified program
 -i, --interactive run in interactive mode [default]
 -l, --list list all registered programs
 -h, --help display this message
Extra Information:
 -m, --email=ADDRESS email the results to ADDRESS, if any results at all
 -o, --output=PATH when downloading an update, specify where to download
 -p, --program=NAME specify a program
 -t, --type=TYPE specify the type of update to download/install
 -q, --quiet suppress all unnecessary output
 -v, --verbose display more informational output
To download or install updates, both the program name and the type to download
MUST be specified.

This can, of course, be seen any time by executing luau -h (or luau –help). Little
extra explanation is needed here – the basic idea is that one (and only one) mode must be
specified, in addition to any number of “extra information” options. Note that (as should
be obvious) you need to specify both a program name and an update type (-p, -t) in order
to download or install an update. Similarly, it doesn't make any sense to specify an
update type when you're only trying to list registered programs; luau probably won't
complain, though. Interactive mode offers almost the same functionality:

List of commands:
get <PROGRAM-ID> <UPDATE-ID> [<PACKAGE-TYPE>] [<FILENAME>]
 - Retrieve a package of type PACKAGE-TYPE and download it to FILENAME
 (if specified), or the current directory (if not).
install <PROGRAM-ID> <UPDATE-ID> [<PACKAGE-TYPE>]

 - Retrieve and install an update of type PACKAGE-TYPE.
list [<PROGRAM-ID>]
 - If PROGRAM-ID is specified, show whether it is registered. Otherwise,
 list all registered programs.
updates [<PROGRAM-ID>]
 - Retrieve and list all updates available for PROGRAM-ID (or all
 registered programs, if not specified).
quit
 - Quit luau and return to command prompt
Note that for PACKAGE-TYPE, you must enter one of the following:
 RPM DEB SRC AUTOPKG EXEC

Again, this can be viewed at any time by entering “help” or “?” at the interactive prompt.

One final note: although it's not specified in the small help message, if you select list
mode (-l) and specify a program name (-p), it will output only the name and version of
the specified package, and it'll only do that if a program with the name specified is
registered with Luau. This may be helpful in shell scripts (or configure scripts) to see
if a program needed is installed. Other details like this can always be found in the one
definitive source: the man page (man luau).

2.3.Using luau-x – The X App
This will most likely be where you do most of your work with Luau supported programs
as an end-user. Luau-X s the X version of luau – it provides all the same functionality,
but in a neat little graphical package. Luau-X actually provides more functionality than
luau in the fact that it shows and can modify the data associated with each registered
program (see luau-register in the Other Apps section below for information on
how to do this from the console). However, the main focus of Luau-X is to provide an
easy way to find available updates for all registered programs simultaneously, and to
view and install those you find appropriate.

The main factor in getting used to Luau-X is simply to use it – it's a rather simple
interface and finding out how to do what you want to do should be a rather simple
process. There are a few caveats to point out, however. First of all, as you may know if
you've browsed the Programmer's Guide, Luau (or rather the library interface, libuau)
provides a standard error output facility. In Luau-X this is redirected into an error log.
To view the error log, simply select View->Error Log from the main window. This may
seem like a trivial fact to point out here, but it is of utmost importance in ironing out the
problems that will almost certainly arise as developer's grow accustomed to the Luau
interface and as the Luau system itself matures. If you have any problems concerning
downloading updates, installing updates, or anything else, this is the first place to look –
it may help you solve your problem, and if not, it will be the first thing any of the Luau
developers will ask for if you ask them for help.

Another thing to note is that, like the rest of Luau, Luau-X is a work-in-progress, and
bugs are unfortunately to be expected. If you have any problems, don't just live with it –
email me! First of all you should make sure you have the latest revision installed (which
shouldn't be hard to find out, considering you have Luau installed and that's exactly what
it's for), and if possible see if you can fix the problem on your end, but if nothing works,
please feel free to drop me a line. My e-mail address is <deklund@fastmail.fm> and I'm

always more than willing to answer questions and receive bug reports.

2.4.Other Apps
Currently, the only other application provided with the Luau suite is luau-register.
In general, end-users shouldn't have to deal with this program – in fact, it's generally a
bad idea to at all, unless you know exactly what you're doing. It's used to register new
programs with the Luau database or to update existing programs to reflect configuration
changes. As such, it will most often be called from installation scripts run by Luau-
supporting software packages as they register themselves with the Luau database in order
for you to be able to check and download updates for them. If you'd like more
information about luau-register or how this process works as a whole, skip on
down to the Developer's Guide – there's plenty of useful information on everything you
need or want to know there.

2.5.Final Notes
I've already mentioned it, but I'd just like to re-emphasize – please, please contact me
with all bugs, inconsistencies, or just general comments that you have. One of the
driving factors of Open Source software is the close link and communication between
users and developers (and I believe Luau will only help encourage this, through the use of
message updates) – and as such, it is your responsibility as a user to keep the
development team updated with any problems there may be. And believe me: if you're
trying out one of these first Luau releases, issues will inevitably arise.

So once again, in case you missed it, my email address is <deklund@fastmail.fm>, and I
would love to hear from you. All correspondence is greatly appreciated, and I will try to
get back to you as promptly as possible.

III.Developer's Guide
3.1.How Luau Works

The heart of Luau's updating system lies within the software repository file. This is a file
hosted somewhere public by the project maintainers which in essence describes all
currently available updates and messages. As a developer, the only thing you have to do
to support Luau is to host this file and keep it updated. Then you simply add a command
to the installation script for your project (more on this later) in order to register the
location of the updates file with the Luau database stored on your client's computer, and
you're done. If you want more flexibility, you can also interface with the libuau library
and take direct control over the Luau facilities (see the Programmer's Guide for details),
but for most purposes, simply registering your program and then letting the Luau
application suite deal with the rest should be enough.

3.2.Understanding the Luau XML File
The style of the updates file is a simple XML format:

<keyword [att1=<value1> [att2=<value2>, ...]]>

Since there are three separate types of updates – software updates, messages, and Luau
configuration updates (see section 2.1) – it should make sense that there is a different set
of keywords available to each type. However, there's also a set of keywords common to
all types: we'll cover those first.

We'll begin with an example updates file (this is in fact a copy of the
example.respository.xml file distributed under docs/ with Luau):

<?xml version="1.0"?>
<!DOCTYPE luau-repository SYSTEM
 "http://luau.sourceforge.net/luau-repository-1.0.dtd">
<luau-repository interface="1.0">
 <program-info id="@example.com/myproject">
 <shortname>myproject</shortname>
 <fullname>MyProject Projector</fullname>
 <desc>Projectilize projecting projectiles</desc>
 <url>
 ftp://ftp.example.com/myproject/myproject.repository.xml
 </url>
 </program-info>
 <software version="1.1.1">
 <date>2003-04-12</date>
 <keyword>UNSTABLE</keyword>
 <short>Upgrade to myproject version 1.1.1</short>
 <long>
Version 1.1.1 supports CoolStuff extensions and drops legacy support
for pre-1.0 versions.
Many bug fixes have also been made, including:
 o Preventing myproject from crashing when user inputs curse words
 o No more gamma radiation problems (hopefully)
!!! NOTE !!!
INSTALLING version 1.1.1 WILL DROP COMPATIBILITY WITH BINARIES COMPILED
WITH PRE-1.0 versions!
If this is a problem, please stick with the 1.0 branch
 </long>
 <package type="RPM" size="1200144"
 md5="29168bed9cc7e04652e82bc09b3c7b98">
 ftp://ftp.example.com/binaries/myproject-1.1.1.rpm
 </package>
 <package type="DEB" size="1432534"
 md5="98336d9f8cb04bc909a9a2a13a9e893c">
 ftp://ftp.example.com/binaries/myproject-1.1.1.deb
 </package>
 <package type="SRC" size="6323511"
 md5="717ab9d5dfcb8900ca14182dc0a0dbb2">

<mirror weight="80%">
 ftp://ftp.example.com/src/myproject-1.1.1.tar.gz
 </mirror>

<mirror weight="20%">

 http://www.example.com/myproject/myproject-1.1.1.tar.gz
 </mirror>
 </package>
 <valid type="date" from="2003-05-02" to="2003-05-15"/>
 </software>
 <update type="message">
 <id>201</id>
 <date>2003-04-14</date>
 <short>Artists needed!</short>
 <long>
myproject is looking for some talented artists to help with the newly
planned action simulation adventure game, "MyProject: The GAME." If
you're interested, please contact jimbo@example.com
 </long>
 </update>
 <update type="luau-config">
 <id>301</id>
 <date>2003-04-14</date>
 <keyword>IMPORTANT</keyword>
 <short>New server</short>
 <long>
We've got our own ftp server now, so we're trying to get everyone to
switch over to using the example.com database. Please accept this
update, since the old ftp server will be unavailable in a month or so,
and trying to autoupdate from it after that will fail. Thanks. :)
 </long>
 <set url="ftp://ftp.example.com/pub/myproject/updates"/>
 </update>
</luau-repository>

General Keywords:

<luau-repository interface=”version”>
 [...]
</luau-repository>
Values for version: “1.1” (required)
Enclosing tag for all software and updates. The “interface” attribute defines the
luau-repository file format version – the most current (and only available, for the
moment) is “1.1,” and should be specified as such in all Luau XML files.

<software version=”revision”>[...]</software>
Values for version: parse-able program version identifier (required)
Example:

<software version=”1.1.1”>
 [...]
</software>

Starting declaration for a software package definition. The “version” attribute must
be in a form Luau can parse – if your versioning scheme does not fit such a model
(almost all do), then you'll have to specify that definition in a <display-version>

tag and use a different easily-readable version identifier here. See section 3.3 below.

<update type=”update-type”>[...]</update>
Values for type: message, luau-config (required)
Example:

<update type=”message”>
 [...]
</update>

Starting declaration for a new (non-software) update definition – both messages and
configuration updates.

<id>identifier</id>
Example: <id>201</id>
Assigns an ID to an update. Required for all message and luau-config updates.
identifier may contain any alphanumeric characters. Also, it must be unique (for the
program in question). There are no other specific requirements for identifier, but it
suggested that you make it descriptive and concise (less than 12 characters or so if
possible). It is also possible to specify an ID for a software package, but it is
unnecessary: Luau by default simply uses the version of any given package (as specified
by the version= attribute or the <display-version> tag) as its ID.

<date>MM/DD/YYYY</date>
Example: <date>03/17/2003</date>
Assigns a date to an update. Is valid for all three kinds of updates (and also
recommended for all three), but not necessary for any. This is not used directly by Luau
in any way, but it is useful for end-users to see when an update was released.

<short>short-description</short>
Example: <short>Upgrade to the myproject version 1.1.1</short>
Provides a short description for the update in question. Is valid and highly recommended
for all three types of updates, though not required by any. Must be no more than one line
long.

<long>long-description</long>
Example:

<long>
Version 1.1.1 supports CoolStuff extensions and drops
legacy support for...
</long>

Provides a long description for the update in question. Is valid and highly recommended
for all three types of updates, though only required for message updates. Should be a
paragraph or two long, depending. If you have anything particularly lengthy to describe,
you should redirect the user to a web page instead, since the Luau message view dialog
isn't really appropriate for reading pages and pages of material. For a software release,
for example, you may want to include some brief release notes here, but a full Changelog
would be inappropriate.

<keyword>keyword-name</keyword>
Values for keyword: STABLE, UNSTABLE, IMPORTANT, [user_defined]
Example: <keyword>STABLE</keyword>
Assigns a keyword to an update. This is used internally to demarcate and/or emphasize
certain aspects of specific updates. Also, if you plan on using libuau, you may define
your own keywords and use them in your own program – luau and luau-x will simply
ignore them. Note that keywords are case-sensitive and all-uppercase keywords are
reserved for Luau's use – if you want to use your own, make it lower case (or mixed
case).

Keywords Specific to Software Updates:

<package type=”pkg-type” size=”pkg-size” md5=”md5sum”>
 pkg-location OR [<mirror>...]
</package>
Values for type: RPM, DEB, AUTOPKG, EXEC, SRC (required)
Values for size: integer specifying package size in bytes (optional)
Values for md5: 32-character string specifying the md5sum of the package (optional)

Example:
<package type=”RPM” size=”1002453” md5sum=”95dbc2411471aab385ad4adf18a8b5b7”>
 <mirror weight=”80%”>
 ftp://ftp.example.com/pub/myproject-1.1.1/binaries/myproject-1.1.1.rpm
 </mirror>
 <mirror weight=”20%”>
 ftp://ftp.other.com/pub/myproject-1.1.1/binaries/myproject-1.1.1.rpm
 </mirror>
</package>

Specify a package where this update can be downloaded. pkg-location must be a URL
that can be read and parsed by libcurl (any FTP or HTTP location should be fine).
Required for any software update.

Supported <mirror> Declarations (inside <package> tag):
<mirror weight=”weight%”>mirror-location</mirror>
Values for weight: integer between 1 and 100 specifying how frequently that

mirror should be chosen over the others (e.g., a mirror with weight 20% will be
picked 20% of the time) (optional)

Example:
 <mirror weight=”80%”>
 ftp://ftp.example.com/pub/myproject-1.1.1/binaries/myproject-1.1.1.rpm

 </mirror>
Specifies a mirror where the file can be downloaded with a specific weight. Used
when the package can be question can be obtained from several locations. If the
weight is not specified, then every mirror is given equal weight.

<valid type=”valid-type” from=”from” to=”to” for=”for” />
Values for type: date, version
Example:

<valid type=”date” from=”02/05/2003” to=”05/15/2003” />
<valid type=”version” from=”0.2.0” />

Specifies certain conditions for which this update is valid. You shouldn't have to use this
under most cases, unless you specifically want to hide certain updates from certain users
(one good example would be to put out a message only for users using a release witha
major security vulnerability – in this case, you'd use something like <valid
type=”version” for=”0.2.4” />. See section 3.3 below for more information
on Luau's version parsing abilities.

Keywords Specific to MESSAGE Updates:

There aren't any. The LONG and SHORT keywords provide you with everything you
should need.

Keywords Specific to LIBUPDATE Updates:

<set url=”valid_url” />
Example: <set url=”ftp://ftp.example.com/pub/myproject/updates” />
Defines the new place where an updates file can be accessed. Valid_url must be
(surprise, surprise) a valid URL – specifically, one that can be parsed and downloaded by
cURL. At the moment, this is the only update you can make through a “luau-config”
update.

3.3.Version Parsing in Luau
One of the boons of the Luau style of software distribution is that any number of software
revisions are available at any point in time – meaning that if you ever have the need to
“down-grade” software due to unexpected limitations or bugs in a newer version, you
always have that capability (for this reason it is suggested that distributors not remove old
software revisions from the Luau XML file unless they truly are ancient). On the end-
user's side, however, one doesn't want to be bogged down by a list of old and essentially
irrelevant software revisions when one only wants to check if any new releases have
come out. For this reason, both the Luau front-ends by default filter out and hide all
available software versions older than the currently installed version.

The problem with this scheme is that not all versioning schemes fit the same template.
Fortunately Luau's version parsing algorithm (based off the one used by Autopackage) is
fairly flexible, but there will always be some exceptions.

In general, any versioning scheme that roughly follows any of the following formats
shouldn't have a problem:

✔ 1.2.4, 3.5-rc10, 3:1:2 – Any scheme that follows the pattern a.b.c.d.(...), where the
first number (or letter) represents the most “significant” release number (e.g., 3.2 >
2.3) will work. Any non-alphanumeric character can be used to separate the major,
minor, etc. revisions. Note that an alphabetic release always precedes a numeric
release – for example, 1.2 > 1.2b, 2.0 > 2.0-rc10, 2.1.2 > 2.1b. This may cause some
problems for some people – see below.

✔ 1999-12-03, 20030115 – these date-like versions will work only if the year is listed
first, followed by the month, followed by the day (i.e., with the most “significant”
index first). It should be clear to see that this is parsed just like the major.minor.patch
case, except with different separators.

These, on the other hand, will not work:

✗ 1.0 < 1.0a < 1.0b < 1.1 – As mentioned before, an alphabetic release is always “less
than” a numeric release: in this case, version “1.0” will be read as being a later
release than “1.0a.” There isn't really anything I can do about this, because there is an
intrinsic ambiguity in the notation – when you say “1.0a”, do you mean “1.0 alpha” or
“supplement to 1.0?” More schemes fall into the former case than the latter, so that's
what gets supported.

✗ “Decreasing” Version Numbers (e.g., “counting down from 100”) – I've seen a few
people get really creative with their versioning scheme by doing things like counting
down from a certain original release number (like 100 or 1000), decrementing the
version number with each new release (100, 99, 98, and so on... apparently, by the
time you get to zero, you will have obtained the perfect release candidate). This can't
be supported for obvious reasons.

✗ 12/24/2003, 01-03-2004 – These schemes are not supported because they don't list the
requisite parts of the version in a “logical” ordering. While it would be possible to try
to get Luau to understand these schemes, it would almost inevitably break certain
other non-date based valid schemes – again, there's an ambiguity in a version like
“1.2.98”: do you mean “January 2nd, 1998” or “Major: 1, Minor: 2, Patch: 98?” In the
former case, “1.2.99” would certainly be a later release than “2.2.98,” but the opposite
is true in the latter. If you want to use a release date scheme, please use one as listed
above or read on to find out how to get it to work.

Most people shouldn't be affected by this (from browsing freshmeat.net, almost all
projects are labeled in a “major.minor.patch” form), but if your project's versioning
scheme causes a problem, there is something you can do – though it isn't particularly
ideal. What you have to do is use a different versioning scheme when you're amending
your Luau XML file – I would suggest using a release date scheme as mentioned above to
prevent any kind of confusion – and then put the “real” version number in a <display-
version> tag in the relevant <software> section. For example, say you were using a
decreasing scheme as mentioned above, and on February 13th, 2004 you released version
“58.” Then you may do something as follows:

<software version=”2004-02-13”>
<display-version>58</display-version>
...

</software>

If on the other hand you used a “1.0 < 1.0a < 1.0b < 1.1” scheme, something as follows
may work better (say you were releasing version “1.0b”):

<software version=”1.0.2”>

<display-version>1.0b</display-version>
...

</software>

...where the alphabetic character “b” has been replaced with “.2”. This would work as
you would expect.

Having said all that, however, I highly suggest that you stick to a “standard” versioning
scheme. Doing otherwise is only bound to confuse your users.

3.4.Using luau-register
luau-register is an incredibly simple application, but it's also a very important one. Since
Luau works on a decentralized basis, it's your responsibility as a developer to register
your program with the internal database on each of your user's systems. This is a simpler
task than it sounds – all you have to do is, after your software has been installed (in a
post-install script, for example), automatically call luau-register with the
appropriate values – program ID, version, release date, etc.

Luau's command arguments are as follows (as usual, you can also find this out by simply
running luau-register -h):

Usage: luau-register [OPTION] ... [program_id]
Register a program with the specified details in the luau database.
Options:
 -r, --remove remove specified program from the database
 -u, --url=LOCATION location of Luau updates file
 -d, --date=\"MM/DD/YYYY\" date of this program version's release
 -k, --keywords=”KEY1,KEY2,...” keywords for this program revision
 -v, --version=VERSION installed version of this program
 -i, --interface=VERSION interface version for this program
 -n, --shortname=NAME short “UNIX name” or program
 -f, --fullname=NAME full/display name of program
 -s, --desc=DESC one-line description of program
 -h, --help display this message
 -l, --from-url=URL read program information from specified URL
 -e, --from-file=FILE read program information from local file

 Note that both the server and the software repository URL must be set for
 Luau to work for any given program. If no short name is specified, the
 program_id is used. Please see the Luau whitepaper for more information.

An important thing to note is that your program ID must be unique from all other ID's
used by other software projects that use Luau. The best way to deal with this is to use
Autopackage's “root name” naming scheme, which looks something like this:

@example.org/program-name
...where “example.org” is the domain owned by the software maintainer, and program-id
is just the name of the program in question. This way all program IDs are made unique
and collisions should be rare since the root name system leverages off the uniqueness of
top level domains. These names will never be exposed to the user, who will instead

always see either the “short name” (specified by luau-register) in the context of the
command line, or the “full name” (again specified by luau-register) in the context of the
graphical environment. As an example, Luau's root name in this scheme is
“@luau.sf.net/luau”; its short name is “luau”; and its full name is “Luau Software
Updater.”
The "--from-file" and "--from-url" are also quite useful, since they allow you to simply
specify a Luau repository file and read in the program information from there. As a
developer, you have the choice of simply specifying this instead of writing out all the
program information by hand again; however, you must (in addition to using the "--
from-file" option) specify the version, interface, date, and any keywords associated with
the given package being installed, since that cannot be read from the repository file
(since luau-register doesn't know which package you're installing). Also, please don't use
the "--from-url" option in an installation script: while it sounds convenient, not all users
have always-on Internet connections (or even access to one). In reality, the "--from-file"
and "--from-url" options are more meant for use by the user than by the the software
developer.
Any of the following commands would be valid:
luau-register --from-file="doc/example.repository.xml"
 --version="1.1.1"
 --date="2004-06-02"
luau-register --url="http://example.org/example.repository.xml"
 --version="1.1.1"
 --date="2004-06-02"
 --shortname="myproject"
 --fullname="MyProject Projectilizer"
 --desc="Projectilize Projecting Projects"
 "@example.org/myproject"

3.5.Good Policies (aka, How Not To Annoy Your Users)
In general, the really important thing to realize when using Luau is that your users are
using it to retrieve updates for the project, and that's it. Luau provides an avenue for you
to send messages to your user-base (a feature that you'll hopefully find useful), but it's
important not to abuse it. Users want to hear about important security updates, or
possibly occasional calls for recruitment – they don't, on the other hand, want to hear
about your personal life, or other things unrelated to the software at hand: don't, for
example, use it as your personal blog (unless a desire to read your blog was the specific
reason people downloaded your software – unlikely, at best). Overall, message updates
should be relatively rare things – if you're putting them out more than about once a
month, maybe you should rethink what you consider to be truly important.

Particularly, don't send out a message update with every new software release. This is
what software updates are for – no reason to be redundant. Only put out a message
announcing a software release if you think it's really important – if, for example, it fixes a
major security hole, or if it's a major enhancement over the previous versions (and even
that's questionable).

IV.Programmer's Guide
Sorry, this hasn't been written yet! However, there is a rather thorough description of
the libuau interface (made using doxygen) available both in the Luau distribution (under
docs/api/) and online: http://luau.sourceforge.net/api/

Specifically, you'll want to look at the libuau.h interface, since this is the only methods
you, as a libuau programmer, will have access too. The interface is relatively simple,
but beware – in its current state, it is very volatile. There will most likely be many
updates and changes before the interface stabilizes – therefore, I recommend that, unless
you specifically need to extra functionality, you simply stick to the means available (ie,
luau and luau-x) instead of writing your own solution.

V.Contributor's Guide
Sorry, this hasn't been written yet either! Once again, however, there is a detailed
description of the internal API as well as the libuau interface in the Luau distribution
(under docs/api/) and online: http://luau.sourceforge.net/api/

Also, I have attempted to comment the source code and make it as clear as possible for
anyone interested in contributing. As always, if you have any questions or comments (or,
even better, patches!), please e-mail me at <deklund@fastmail.fm>. Thank you for your
help!

VI.Conclusion
As a developer, I have invested a number of months into the preparation, planning,
execution, and documentation of the Luau software suite. As such, it is my sincere hope
that it will be found useful and applicable to the Open Source community. However, I
realize that my work alone cannot fulfill the needs of every software developer, and that
certainly the needs I have addressed with the creation of Luau will not necessarily meet
all the needs of others. Therefore, I ask once again for anyone who has taken the time to
read through this document, or even anyone who only read the Introduction and then just
skimmed the rest (you know who you are) to e-mail me any feedback you may have. I'm
open to suggestions, criticism, and any offers of help you can provide.

Also let me reiterate that I am always open to providing support – if you're a developer
who wants to implement Luau in your software project, but are having problems getting
it to work or can't understand one of the specifics, don't give up: just ask me! I have tried
to make everything as clear as possible both in coding and in documentation, but I'm no
expert technical writer – I'm sure there have been spots in this document where things got
confusing, redundant, or simply irrelevant. As always, any clarification you need I will
happily provide. Once more, my e-mail address is <deklund@fastmail.fm> - take
advantage of it.

Finally, thank you for taking the time to find out more about Luau. I believe that it has
the capability of being a boon to the Open Source development model – but only if it is
widely heard about and implemented by many software projects. If you know anyone
who may be interested in using it, please feel free to tell them about it and redirect them
to this document and the Luau web-page, http://luau.sourceforge.net.

- David Eklund, Project Maintainer and Head Developer

VII.Appendices
Appendix A. GNU Free Documentation License

GNU Free Documentation License

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in
the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The

relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or
"History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,

and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.
• F. Include, immediately after the copyright notices, a license notice giving the public permission to

use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document's license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the

title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-
Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation's users beyond what the
individual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

